Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aliakbar Dehno Khalaji, ${ }^{\text {a }}$
 Mehdi Amirnasr ${ }^{\text {a }}$ and Jean-Claude Daran ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and
${ }^{\text {b }}$ Laboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077
Toulouse Cedex, France

Correspondence e-mail: daran@lcc-toulouse.fr

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=24.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dichloro(2,5-diphenyl-3,4-di-2-pyridyl-cyclopenta-2,4-dienone)cobalt(II)

In the molecule of the title complex, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\right)\right]$, the coordination polyhedron about the cobalt(II) center is best described as a distorted tetrahedron. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions link the molecules, forming infinite chains.

Comment

Cobalt compounds have been of great interest in coordination chemistry (Chen, 2006; Chen et al., 2005; You et al., 2004; Amirnasr et al., 2001, 2002; Minardi et al., 1999; Viossat et al., 1994).

(I)

A new tetrahedral cobalt(II) compound, $\left[\mathrm{CoCl}_{2}(\operatorname{Red}-L)\right]$, (I), where Red- L is 2,5-diphenyl-3,4-di-2-pyridylcyclopenta-2,4-dienone, derived from a bidentate chelating ligand (RedL) and two chloride anions, is described here. The title compound, (I), is an electronically neutral mononuclear cobalt(II) compound.

Figure 1
A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
A packing diagram of (I), viewed down the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

The $\mathrm{Co}^{\mathrm{II}}$ atom is in a tetrahedral geometry and is coordinated by one chelate ligand, and two chloride anions (Fig. 1). The Red- L ligand acts as a bidentate ligand and ligates to the Co atom through the two N atoms.

The average $\mathrm{Co}-\mathrm{N} \quad[2.042(14) \AA$ and $\mathrm{Co}-\mathrm{Cl}$ [2.2206 (5) Å] bond lengths (Table 1) in (I) are in good agreement with the corresponding mean distances of [2.048 (4) and $2.2273(15) \AA$] in the related complex CoCl_{2} ($\mathrm{Phca}_{2} \mathrm{en}$), (II), where Phca_{2} en is N, N^{\prime}-bis $(\beta$-phenyl-cinnamaldehyde)-1,2-diiminoethane, (Amirnasr et al., 2002). The $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2 \quad\left[97.30(5)^{\circ}\right]$ and $\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2$ [118.52 (2) ${ }^{\circ}$] angles (Table 1) in (I) are larger than the corresponding angles [84.07 (15) and 110.17 (6) ${ }^{\circ}$] in (II).

In the crystal packing, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 2) link the molecules, forming infinite chains (Fig. 2).

Experimental

The 2,5-diphenyl-3,4-di-2-pyridylcyclopenta-2,4-dienone (Red- L) ligand was prepared as reported elsewhere (Amirnasr et al., 2000). Compound (I) was prepared by the reaction of CoCl_{2} with Red- L (1:1) in an acetonitrile solution (5 ml) at 298 K . The dark-green precipitate was filtered off and dried under vacuum. Dark-green crystals of (I) were obtained by the slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into an acetonitrile solution of the complex at 298 K (yield $0.0423 \mathrm{~g}, 82 \%$; m.p. 503 K).

Crystal data

[$\mathrm{CoCl}_{2}\left(\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\right)$]
$M_{r}=516.26$
Monoclinic, $P 2_{2} / c$
$a=7.2884$ (3) А
$b=15.2580$ (8) \AA
$c=21.5709(9) \AA$
$\beta=101.001$ (4) ${ }^{\circ}$
$V=2354.7$ (2) \AA^{3}
$Z=4$
$D_{x}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8076
reflections
$\theta=2.9-32.0^{\circ}$
$\mu=0.98 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Block, dark green
$0.37 \times 0.30 \times 0.23 \mathrm{~mm}$

Data collection

Oxford Diffraction XCALIBUR diffractometer
ω and φ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.704, T_{\text {max }}=0.792$
22412 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.11$
7176 reflections
298 parameters
H-atom parameters constrained

7176 independent reflections
5404 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=30.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-21 \rightarrow 20$
$l=-30 \rightarrow 30$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.055 P)^{2}\right. \\
& \quad+0.0498 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 1$	$2.0325(13)$	$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.2161(5)$
$\mathrm{Co} 1-\mathrm{N} 2$	$2.0517(14)$	$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2245(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$97.34(5)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Cl} 2$	$106.32(4)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Cl} 1$	$111.13(4)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{Cl} 2$	$105.13(4)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{Cl} 1$	$115.96(4)$	$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2$	$118.53(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.95	2.53	$3.432(2)$	158

Symmetry code: (i) $-x-1, y+\frac{1}{2},-z+\frac{1}{2}$.
H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Amirnasr, M. \& Gorji, A. (2000). Thermochim. Acta, 354, 31-38.

metal-organic papers

Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. \& Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733-2742.
Amirnasr, M., Schenk, K. J., Gorji, A. \& Vafazadeh, R. (2001). Polyhedron, 20, 695-702.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Chen, H.-M., Shi-Ping, Y., Chen, Q.-Q., Zhang, F., Jia-Min, C. \& Yu, X.-B. (2005). Acta Cryst. E61, m1001-m1003.

Chen, Y. (2006). Acta Cryst. E62, m153-m154.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Minardi, G., Mura, E., Pistuddi, A. M., Solinas, C., Bacchi, A., Pelizzi, C., Pelizzi, G. \& Chelucci, G. (1999). Transition Met. Chem. 24, 481-485.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Viossat, B., Dung, N. H., Lehuede, J. \& Vierfond, J. M. (1994). Acta Cryst. C50, 211-214.
You, Z.-L., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. E60, m1900m1902.

[^0]: © 2006 International Union of Crystallography All rights reserved

